

PROMOTING WORLD-WIDE PLANT HEALTH AND FOOD SECURITY

INTERNATIONAL SOCIETY FOR PLANT PATHOLOGY

ISPP NEWSLETTER

ISSUE 55 (11) NOVEMBER 2025

Editor: Daniel Hüberli (email)
Join the ISPP mail list

Obituary of Lina Concepcion Luna-Ilag, Filipino Plant Pathologist, 1938-2025

New biosensor tracks plants' immune hormone in real time Obituary of Melda Laing Moffett, An Australian Icon of Plant Bacteriology, 1930-2025

Advances in bioprotection of plants against diseases. New Book Mechanisms and genetic resources in crop protection Undermining the cry for help

Crop-killing pathogen found to disable plant 'alarm system' Ultra-short RNA insertions offer scalable, cost-effective gene silencing for agriculture

Swedish university honours Michael Wingfield for forest research

Current Vacancies

Acknowledgements

Coming Events

IĆPP2028

INTERNATIONAL SOCIETY FOR PLANT PATHOLOGY (ISPP)

OBITUARY OF LINA CONCEPCION LUNA-ILAG, FILIPINO PLANT PATHOLOGIST, 1938-2025

MARK ANGELO BALENDRES, PROFESSOR, DE LA SALLE UNIVERSITY, PHILIPPINES, 15 OCTOBER 2025

It is with deep sorrow and profound respect that I share the passing of Dr. Lina Concepcion Luna-Ilag, plant pathologist, professor, and mentor, whose pioneering research in mycology and postharvest pathology advanced the understanding of fungal diseases in crops vital to Philippine agriculture.

Dr. Ilag earned her Ph.D. in Plant Pathology from Purdue University in 1970, her M.S. in Plant Pathology from the University of Hawaii in 1963, and her B.S. in Agriculture (Cum Laude) from the University of the Philippines Los Baños (UPLB) in 1960. She was a SEATO Scholar, East-West Center Scholar, and a Graduate Center Fellow at Purdue University.

A devoted scientist and educator, Dr. Ilag specialised in Plant Pathology, emphasising fungal diseases of crops and mycotoxin contamination. Her studies on *Alternaria porri* and *Aspergillus flavus* laid the foundation for understanding plant disease etiology and control strategies in tropical environments.

Dr. Ilag authored and co-authored numerous publications in leading journals, including Phytopathology and Science. Her works, such as "Ethylene production of fungi" (Science, 1968) and "Aflatoxin production of Aspergillus flavus isolates from agricultural crops" (Philippine Agriculturist, 1973), remain widely used references in the field of tropical plant pathology.

Throughout her career, Dr. Ilag was recognised for her academic excellence and dedication to teaching. She received the Distinguished Teacher Award from UPLB's College of Agriculture in 1983 and held the McMicking Professorial Chair from the Filipinas Foundation (1980–1982). She was also honored with a Postdoctoral Fellowship from the RP-IBRD (1982) and was included in the Roster of Scientists for Major Food Crops of the Developing World (Washington, D.C., 1975).

Beyond her research, Dr. Ilag was known as a nurturing mentor and inspiring teacher who instilled scientific rigor and integrity in generations of students. Her work on postharvest diseases, aflatoxin contamination, and biocontrol of plant pathogens contributed immensely to ensuring food safety and agricultural sustainability in the Philippines.

Dr. Ilag's devotion to studying plant diseases stands as a testament to her belief that science must serve both the farmer and the nation. Her legacy endures in the countless students she mentored, the crops protected through her research, and the knowledge she cultivated with compassion and excellence.

Our heartfelt condolences go to her family, friends, colleagues, and former students. Dr. Lina Concepcion Luna-Ilag will be remembered not only for her contributions to plant pathology but also for her generosity of spirit, her dedication to science, and her enduring love for teaching.

Information Source: https://spheres.dost.gov.ph

NEW BIOSENSOR TRACKS PLANTS' IMMUNE HORMONE IN REAL TIME

SAINSBURY LABORATORY NEWS, 9 OCTOBER 2025

Sainsbury Laboratory scientists develop tool to unlock salicylic acid's secrets that could benefit crop protection and potentially provide insights into aspirin biology. From willow bark remedies to aspirin tablets, salicylic acid has long been part of human health. It also lies at the heart of how plants fight disease. Now, researchers at Sainsbury Laboratory Cambridge University (SLCU) have developed a pioneering biosensor that allows scientists to watch, for the first time, how plants deploy this critical immune hormone in their battle against pathogens.

Published in <u>Science</u>, Dr Alexander Jones' group at the Sainsbury Laboratory Cambridge University (SLCU) presents SalicS1, a genetically encoded biosensor that can detect and track the dynamics of the plant immune hormone salicylic acid (SA) with exquisite precision inside living plants. Salicylic acid is a central regulator of plant immunity, triggering defence responses against a huge diversity of invaders. Until now, however, scientists lacked the tools to measure SA at high enough spatial and temporal resolution to understand how plants balance growth with immune defence.

"Plants keep salicylic acid signalling, which can slow growth, in reserve and carefully activate it when needed. Pathogens like fungi, viruses and bacteria as well as pests like aphids have evolved several ways to suppress SA and weaken plant immunity," said Dr Jones. "By enabling precise, high-resolution monitoring of SA, SalicS1 gives us a powerful new way to understand the life-or-death battleground that is SA concentration that could ultimately inform strategies to improve crop resilience."

Using the new biosensor, the team observed surges of SA accumulation spreading from the site of pathogen invasion into surrounding tissues, providing fresh insight into how plants coordinate local and systemic defences.

"Salicylic acid is one of the most important defence signals in plants, but until now we've only been able to see it with specificity in very coarse detail," said Dr Bijun Tang, who is first author of the study. "With SalicS1 we can watch SA as it rises and falls in real time, inside living tissues, and even track how it spreads from cell-to-cell during infection."

The ability to measure SA reversibly and without damaging plant tissues opens up exciting opportunities to address long-standing questions in plant biology, particularly how plants deploy SA in response to both pathogenic threats and environmental stressors.

"This tool represents a major step forward in our ability to monitor SA dynamics as plants respond to a wide range of pests and pathogens that manipulate SA levels," said Dr Tetiana Kalachova, whose team at the Institute of Experimental Botany of the Czech Academy of Sciences played a key role in the research. "Given SA's crucial role in both local and systemic defence, we're hopeful this approach will help us unravel the mechanisms behind how plants navigate growth in complex environments."

SalicS1 may also have implications for human health. SA is the natural compound behind aspirin, one of the world's most widely used medicines, and the team says their biosensor variant that also detects aspirin could be adapted to study aspirin metabolism in human cells.

"We now have the opportunity to map salicylic acid's role across plant tissues, and with simultaneous detection of SA and pathogens, to better understand what separates successful from unsuccessful immune responses. It is analogous to understanding how diseases, in both plants and animals, affect different individuals differently. For example, with COVID-19, after exposure to the virus some people became very ill, while others experienced hardly any symptoms at all. Why do the same diseases at the same inoculation levels affect individuals so differently? The same is true in plants."

By revealing when, where, and how plants that win the battle against pathogens deploy SA, the researchers hope their work will pave the way for future breeding or engineering crops that can better withstand disease while maintaining healthy growth.

OBITUARY OF MELDA LAING MOFFETT, AN AUSTRALIAN ICON OF PLANT BACTERIOLOGY, 1930-2025

GREG I JOHNSON, ANTHONY J YOUNG, AND RITA R COLWELL

In a career spanning 27 years, Dr Melda L Moffett was a pioneering plant bacteriologist from Queensland responsible for diagnosing and developing control measures for bacterial diseases affecting tropical and sub-tropical crops. These included cotton, tobacco, citrus, ginger, cucurbits, tomato and ginger. Melda was a foundation member of the Australasian Plant Pathology Society (est. 1969) and the first APPS Councillor representing Queensland.

Melda Moffett 2011 (Photo AW Cooke).

Dr Melda Laing Moffett was born on 23 September 1930 in the home she lived in for the rest of her life in Gordon Park, a suburb of Brisbane, Queensland. She died at Tri-Care Ashgrove, Queensland at 2.30 PM on 16 August 2025 after injuring her back in a fall earlier in the year. She is survived by her elder sister, Moira (Topsy) Moffett who is 97. Melda's two brothers, Doug and Ian, predeceased her.

Melda was the youngest child and second daughter of William Moffett and Vera Winifred McCreadie who married in 1922. Melda and her siblings were all born in the family home that had been built for their parents before they married. Melda and her siblings attended the Wilston State School. After Primary School, Doug and Ian went to Brisbane Grammar School and St Joseph's College Gregory Terrace respectively, while Melda went to Brisbane Girls Grammar, and Topsy to All Hallows.

A maternal aunt, Lorna McCreadie, known as Nin, lived across the road. Nin was a primary school teacher and a keen gardener. She remained an important influence on the sisters and, like Melda and Topsy, she never married.

After finishing their schooling, Topsy trained as a paediatric nurse while in c.1948-1950, Melda completed a B. Sc. at The University of Queensland, majoring in microbiology.

Left: Melda Moffett University of Queensland Graduation photograph 1951.

In 2022, Melda said she had a scientist's view of life and referred to her studies in microbiology under Professor Vic Skerman who had explained (his theory) that the Animal Kingdom started from blue green algae because they could photosynthesise and thus have the energy to develop further through the fishes which gradually developed lungs and feet through fins and became land-borne.

Melda commenced work in the Plant Pathology Branch of the then Queensland Department of Agriculture and Stock in William St, Brisbane in c. 1951. The Director of Plant Pathology, J. H. Simmonds

MBE (1901-1992), assigned her to type up his library cards since 'as she was a woman' she would probably soon get married and leave employment.

However, Melda stayed, and in c 1965, Melda received an American Association of University Women scholarship to undertake studies at Georgetown University in Washington D.C. specialising in plant pathology with emphasis on bacterial pathogens under Professor Rita Colwell. Melda was interested in the systematics and evolutionary relationships of microbial pathogens, including plant, animal, and human pathogenic bacteria and viruses. The application of computers to taxonomic and phylogenetic analysis of microbial pathogens, the focus of the research of Dr. Colwell, a pioneer in the use of computers in microbial systematics, was of keen interest to Melda. Melda's work contributed to her Master of Science degree awarded by The University of Queensland in 1968. The topic of her thesis was 'Adansonian analysis of the Rhizobiaceae' (Moffett, Melda Laing, 1968) and contributed significantly to better understanding of the systematics of these bacteria (Moffett and Colwell 1968).

Melda and Rita Colwell became life-long friends, with Rita and her husband, Dr. Jack Colwell, meeting over the years in Australia and the United States.

Returning to Queensland in 1968, Melda became the first plant bacteriologist for the Queensland Dept Ag and Stock. In c. 1978-1981, Melda undertook a PhD part-time in the Microbiology Department of The University of Queensland under Dr A.C. (Chris) Hayward, who was one of the most distinguished plant bacteriologists in the world, and an international authority on bacterial wilt. The topic of her thesis was 'Population studies of Pseudomonas solanacearum (Smith, 1896) Smith, 1914' (Moffett, Melda Laing, 1981).

During her career in plant pathology, Melda was responsible for plant bacterial diagnostic services and undertook studies on the major bacterial diseases affecting Queensland Crops. These included research on what is now known as Ralstonia solanacearum, causal agent of bacterial wilt in tobacco, ginger, and many other hosts, citrus canker, bacterial spot of stone fruit, Clavibacter infection of wheat, legume halo blight and bacterial spot of mango, among many others. In short, if it was a bacterium infecting plants, Melda was sure to be on it. In 1985, she was appointed Deputy Director of Plant Pathology Branch and continued in this position until she retired in 1988.

After retirement, Melda and Topsy continued to study conversational French and travelled extensively taking 'Captains Tours' to many parts of the world – including, North and South America, the North and South Poles, Iran, Syria, Jordan, India, Africa, UK, Europe, Asia, the Silk Route and the Baltic countries as well as most parts of Australia and New Zealand.

They were active in the University of Queensland Alumni Association and the UQ Friends of Antiquity and participated in monthly gatherings of retired UQ microbiology department staff at the home of David and Kathy Teakle.

Melda was also a keen gardener, enjoyed walking every day and reading biographies, and avidly followed current affairs. Conversations with her whether by phone, email or in person were always lively – she sometimes despaired of the state of the world, politics, the invasion of Ukraine and the plight of Palestinians.

Melda was a giant in plant pathology and microbiology. She paved the way for many women in science and was a role model for future bacteriologists. Melda went about her work with a passion that inspired, and she did so with a smile on her face. She was both modest and articulate. Her infectious enthusiasm for her field and her outstanding contributions to science, is a legacy by which she will be remembered.

References

Moffett, Melda Laing. 1968. Adansonian analysis of the Rhizobiaceae MSc University of Queensland 1968.

Moffett, Melda Laing. 1981. Population studies of Pseudomonas Solanacearum (Smith, 1896) Smith, 1914. PhD University of Queensland 1981.

Melda L. Moffett, and Rita R. Colwell. 1968' Adansonian analysis of the Rhizobiaceae. Journal of General Microbiology, 51: 245-266.

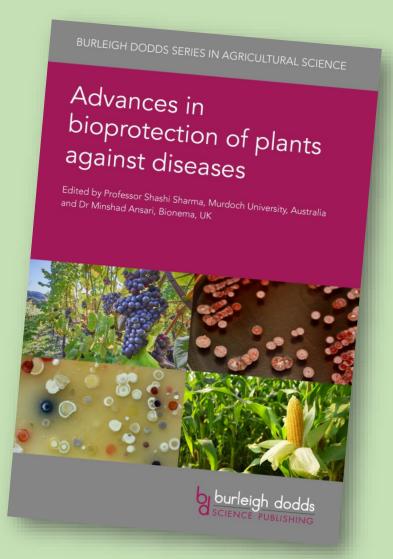
Thanks to Topsy Moffett, Tony Cooke, Ian Muirhead and Libby Howes nee Moffett for assistance with the Obituary and photographs.

ADVANCES IN BIOPROTECTION OF PLANTS AGAINST DISEASES. NEW BOOK

Eds. Shashi Sharma and Minshad Ansari (2025). Advances in bioprotection of plants against diseases. Burleigh Dodds Science Publishing. 408 pp.

Burleigh Dodds Science Publishing are delighted to announce the publication of their new title, Advances in bioprotection of plants against diseases, edited by Professor Shashi Sharma, Murdoch University, Australia and Dr Minshad Ansari, Bionema, UK.

The bioprotectants market was estimated to be worth \$5.5 billion in 2022, with this figure set to rise to over \$11 billion by 2027. With more than 1000 products on the market, a greater understanding of how individual species/strains function as bioprotection agents is required.


This book reviews recent advances in techniques used to identify and develop fungal and bacterial bioprotection agents, including *Clonostachys rosea*, *Pythium oligandrum*, and *Actinomycetes*.

The book also includes a variety of case studies which detail the successful implementation of bioprotection agents to control diseases in a variety of crops, including grapes, cereals and potatoes.

Find out more about this new book here.

Special Offer

Enter code BIO20 at checkout via www.bdspublishing.com to redeem 20% off your purchase of the book. Discount code expires 31st December 2025.

MECHANISMS AND GENETIC RESOURCES IN CROP PROTECTION

A review by Dilara Yüksel and Refik Bozbuğa titled "Mechanisms and genetic resources in crop protection" was published in November 2025 by *Physiological and Molecular Plant Pathology* (vol. 140, paper 102962). The abstract is as follows:-

Plants are continuously faced by a diverse array of biotic stressors throughout their life cycle, including nematodes, fungi, bacteria, insects, viruses and weeds, many of which severely compromise growth, physiology, and yield. Among these, plant-parasitic nematodes (PPNs) are particularly damaging and complex adversaries due to their close interactions with plant root systems and their resilience in soil ecosystems. Notably, cyst nematodes (Heterodera and Globodera spp.), lesion nematodes (Pratylenchus spp.) and root-knot nematodes (Meloidogyne spp.) cause extensive damage across a wide range of crops, resulting in billions of dollars in annual agricultural losses. Their rapid dissemination via irrigation and agricultural tools, combined with limited effectiveness and sustainability of chemical control methods, highlights the urgent need for stable and environmentally safe solutions. Genetic resistance offers one of the most promising and sustainable strategies for nematode management. Over recent decades, numerous resistance genes have been identified and characterized in a wide range of plant species by different research groups. Studies in crops such as tomato, pepper, potato, sugar beet, cereals, and soybean have revealed diverse genetic loci conferring resistance against various nematode species. This review combines the scattered data available in the literature to provide a comprehensive assessment of plant resistance genes against nematodes. While addressing a wide range of plant species and resistance mechanisms, its classification of genes on a plant-specific basis enhances the accessibility of the text for readers from diverse agricultural fields. Furthermore, by summarising the molecular mechanisms and genetic foundations of nematode resistance, it offers a comparative perspective on the major resistance genes present in key agricultural

crops. By synthesising recent advances, this manuscript seeks to guide future research and contribute to the development of nematode-resistant varieties, thereby supporting sustainable plant protection.

Read paper.

UNDERMINING THE CRY FOR HELP

A paper by Anton Kraege *et al.* titled "Undermining the cry for help: the phytopathogenic fungus Verticillium dahliae secretes an antimicrobial effector protein to undermine host recruitment of antagonistic *Pseudomonas* bacteria" was published on 29 October 2025 by *New Phytologist* (early view). The abstract is as follows:-

- During pathogen attack, plants recruit beneficial microbes in a 'cry for help' to mitigate disease development. Simultaneously, pathogens secrete effectors to promote host colonisation through various mechanisms, including targeted host microbiota manipulation.
- Inspired by in silico antimicrobial activity prediction, we investigated the antimicrobial activity of Av2, an effector of *Verticillium dahliae*, *in vitro*. Furthermore, its role in *V. dahliae* virulence was assessed through microbiota sequencing of inoculated plants, microbial co-cultivation assays, and inoculations in a gnotobiotic plant cultivation system.
- Av2 appears structurally unique and lacks domains that hint towards its function. We show that Av2 inhibits bacterial growth and acts as a virulence factor during host colonisation. Microbiota sequencing revealed involvement of Av2 in suppression of *Pseudomonas* spp. recruitment upon plant inoculation with *V. dahliae*, indicating that Av2 suppresses the cry for help. We show that several *Pseudomonas* spp. are antagonistic to *V. dahliae* and sensitive to Av2 treatment.
- We conclude that *V. dahliae* secretes Av2 to suppress the plant's cry for help by inhibiting the recruitment of antagonistic *Pseudomonas* spp. to pave the way for successful plant invasion. Read paper

CROP-KILLING PATHOGEN FOUND TO DISABLE PLANT 'ALARM SYSTEM'

UNIVERSITY OF YORK NEWS, 20 OCTOBER 2025

Scientists have discovered how one of the world's most destructive plant diseases manages to slip past crops' defenses - a breakthrough that could help farmers grow stronger, more resilient plants.

The new research, published in <u>Nature Communications</u>, describes a family of enzymes produced by a microorganism called *Phytophthora infestans*, the infamous causative agent of the Irish potato famine and a recurrent threat to potato and tomato crops worldwide.

Led by biologists and chemists from the University of York, in collaboration with The James Hutton Institute and Université Libre de Bruxelles, the international team discovered that this pathogen employs special enzymes, called AA7 oxidases, to disable the plants' early warning system, weakening their defenses before they can respond.

The team also showed that disabling the genes that encode these enzymes rendered the pathogen incapable of infecting the host.

ALARM MOLECULES

Dr Federico Sabbadin, from the Biology Department's Centre for Novel Agricultural Products (CNAP), said: "It's like burglars cutting the wires to your home alarm before breaking in. The trick is that the pathogen has evolved the same kind of enzyme activity that plants themselves use to keep their alarm signals under control.

"By attacking these alarm molecules, the pathogen switches them off before the plant can react - it's as if the microbe has learned the plant's own language and uses it against it. When we disabled the genes for these enzymes, the microbes became much weaker at infecting plants."

As climate change fuels more extreme weather and disrupts farming, crops are left more vulnerable to pests and disease. With global demand for food rising, every lost harvest deepens the risk of shortages and higher prices.

BETTER STRATEGIES

By uncovering this hidden microbial strategy, scientists have opened the door to new ways of protecting crops. Blocking the AA7 enzymes could keep plants' defenses switched on, helping farmers safeguard yields in an increasingly uncertain climate.

Dr Stephen Whisson, from The James Hutton Institute, said: "We need better strategies for protecting our food if we are to secure global food supplies in the future, and so this latest discovery is a real step forward in doing that. These enzymes are conserved across major plant pathogens, and their discovery paves the way for powerful new strategies in crop protection."

The research is part of the project "Berberine bridge enzyme-like proteins as key virulence factors in plant pathogens" running from 2024 to 2027, and is supported with a £870k grant from the Biotechnology and Biological Sciences Research Council, part of UK Research and Innovation (UKRI).

ULTRA-SHORT RNA INSERTIONS OFFER SCALABLE, COST-EFFECTIVE GENE SILENCING FOR AGRICULTURE

PHYS.ORG, 6 AUGUST 2025

A team of researchers from the Spanish National Research Council has made a significant advance in plant biotechnology by developing a new method for silencing genes. The novel technique uses ultra-short ribonucleic acid (RNA) sequences carried by genetically modified viruses to achieve genetic silencing, allowing the customization of plant traits. The work, published in the <u>Plant Biotechnology Journal</u>, opens up new avenues for crop improvement, functional genomics, and sustainable agriculture.

Viral vector technology involves modifying viruses, removing the genetic material that causes disease, to turn them into vehicles that carry the RNA sequence to be introduced into an organism. This technique, when applied to plants, has already proven effective under experimental conditions in inducing flowering and accelerating the development of improved crop varieties, modifying plant architecture to facilitate adaptation to mechanization, improving drought tolerance, and producing metabolites beneficial to human health, among other applications.

Now, the method developed by the CSIC, together with the Valencian University Institute for Research on the Conservation and Improvement of Agrodiversity (COMAV) and the Italian Department of Applications and Innovation in Supercomputing (Cineca), represents an optimization of technological platforms to accelerate the development and validation of agricultural applications based on viral vectors.

"We have implemented synthetic biology approaches compatible with future industrial-scale production," says Fabio Pasin, a Ramón y Cajal researcher at the Margarita Salas Center for Biological Research (CIB-CSIC), who led the study.

The new technique, called virus-mediated short RNA insertions (vsRNAi), represents a breakthrough in the field that explores the use of viral vectors to improve the agronomic characteristics of crops. By using a benign plant virus, short RNA molecules are transported to plants, triggering a process known as RNA interference (RNAi) to specifically silence genes, preventing the information in a gene from being translated into a protein. This is a new approach that improves the efficiency of reducing the expression of target plant genes.

The researchers have used a combination of comparative genomics and transcriptomics to design vsRNAi targeting specific genes in plants, demonstrating that the insertion of such short RNA sequences, consisting of 24 nucleotides (the basic structural units of ribonucleic acid), can effectively silence genes in plants. These are ultrashort sequences, as viral vector technology typically uses sequences of around 300 nucleotides.

"This innovation dramatically reduces the size and complexity of traditional virus-induced gene silencing constructs, enabling faster, cheaper, and more scalable applications," Pasin notes.

To achieve this, the research team focused on the CHLI gene, which is essential for chlorophyll biosynthesis, and designed viral vectors that carried insertions of between 20 and 32 nucleotides, which were introduced into a model plant. The treated specimens showed visible yellowing of the leaves and significant reductions in chlorophyll levels, confirming robust gene silencing.

"Small RNA sequencing revealed that the vsRNAi approach triggers the production of small RNAs, 21 and 22 nucleotides long, which correlates with effective negative regulation, a process by which gene expression is reduced or stopped, of transcription," adds the CIB-CSIC researcher.

AN EFFECTIVE TECHNIQUE FOR BOOSTING AGRICULTURE

The work involved applying this new approach to the model plant Nicotiana benthamiana, demonstrating its effectiveness in producing the desired phenotypic changes in crops of the Solanaceae botanical family, one of the most important worldwide, as it includes vegetables and staple crops for human consumption, such as potatoes.

Within this family, the technique was used on tomato and scarlet eggplant (*Solanum aethiopicum*) crops, an underutilized species with great potential for cultivation beyond its current areas in Africa and Brazil, and which could even be extended to Europe, where it has niche production and local ecotypes such as the Italian "Rossa di Rotonda."

Among the advantages of the new method over existing RNAi techniques are its simplicity, specificity, and cost-effectiveness, as well as the absence of stable modifications in plant genomes.

"This is a major advance in plant biotechnology, and we are excited about its potential applications," says Pasin. "We believe that the technique could be a revolutionary change for basic research, especially for non-model plants with limited availability of genetic resources and biotechnological tools, but also for agriculture, as it allows for ondemand alteration of crop traits and selective control of pests and diseases."

The results have significant implications for agriculture, as they could be utilized to temporarily modify crop traits to achieve specific phenotypes that enhance yield, disease resistance, and nutritional content. In addition, the portability of vsRNAi between species highlights its potential for high-throughput functional genomics and the modulation of specific traits in both model crops and underutilized crops..

SWEDISH UNIVERSITY HONOURS MICHAEL WINGFIELD FOR FOREST RESEARCH

UNIVERSITY OF PRETORIA NEWS, 7 OCTOBER 2025

Professor Michael Wingfield, founding director of the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria (UP), has been awarded an honorary doctorate by the Swedish University of Agricultural Sciences (SLU) in recognition of his pioneering contributions to global forest science.

Prof Wingfield has spent his career tracing the hidden enemies of the world's forests, like fungal pathogens and pests that threaten ecosystems, industries, and human survival itself. From Pretoria to Minnesota, from the laboratories of FABI to the global networks of the International Union for Forest Research Organizations (IUFRO), Wingfield's influence has stretched far beyond national borders. His research has transformed forestry science, inspired new generations of plant pathologists, and elevated South African science onto the world stage.

For Prof Wingfield, receiving the award was humbling. For science, it was a celebration.

"I felt incredibly privileged to have had a career as a scientist and academic. I hugely appreciated this amazing honour that SLU chose to grant me," Prof Wingfield said. "It was never about me alone. This reflects the support of my family, my students, my colleagues, and a global community of scientists. In every way, it was a recognition of contributions from many people, a supportive home environment, and amazing collaborators who have been the driving force of what I have been able to achieve."

The doctorate symbolises more than personal recognition to Prof Winfield; he sees it as a tribute to the power of science itself. "It was a celebration of science and the creation of new knowledge. The recognition really went to a worldwide network of collaborators committed to discovery and innovation."

That sense of collective achievement has defined his 40-year career. Prof Wingfield consistently credits his teams, his students, and his peers for helping to shape FABI into one of the leading research institutes in plant and forest health.

Looking back, he points to key milestones that paved the way for the honour. Early in his career, he studied under specialists at the University of Minnesota, an experience he calls foundational. Later, he returned to South Africa and established the Tree Protection Co-operative Programme (TPCP), which became a central hub for industry-driven forestry research.

A significant milestone in his career came when he established an entirely new research institute, FABI, at UP in 1998. Today, the institute is recognised worldwide for its contributions to understanding and managing diseases that threaten trees and forests. "Many former FABI students are now global leaders," Wingfield said proudly. "Their impact has been immense, and it all reflects positively on the FABI team and the University of Pretoria."

Prof Wingfield also acknowledged the role of family in his scientific journey. "I have been married to a remarkable academic and scientist for 46 years," he said. "She has been an integral part of my research and my career."

His work has never stopped at South Africa's borders. His deep involvement with IUFRO, which represents more than 15 000 forest scientists globally, has amplified his reach. He credits both FABI and IUFRO as the "most powerful influences" in shaping his career and recognition. Through these collaborations, his colleagues and students have made substantial contributions to solving urgent challenges, ranging from destructive tree diseases to the global sustainability of forestry. Their work continues to provide tools for managing some of the greatest threats facing forests worldwide.

Prof Wingfield sees the award as an inspiration for young researchers. "The sky is the limit," he said. "There are so many opportunities to excel in research and science. Don't underestimate them; they are everywhere if you're willing to look for them. I can think of no better career than one in research."

He hopes the recognition reminds students and emerging scientists that their contributions matter. In his view, the next breakthroughs will come from those who embrace curiosity, collaboration, and persistence.

Even in celebration, Prof Wingfield turned attention to urgent global concerns. "We totally underestimate the importance of plant health," he said. "People forget that trees give us water and clean air. Without trees, we would all be dead."

His words carried the urgency of a scientist who has spent decades witnessing the fragile balance between forests and human survival.

The award stands as a milestone not only for Prof Wingfield but also for South African research as a whole. By recognising his achievements, SLU has also acknowledged the global stature of South African science and its vital role in shaping international forestry research.

"Professor Wingfield's honorary doctorate is a fitting recognition of a career dedicated to advancing forest science and inspiring generations of researchers," said Prof Sunil Maharaj, UP Vice-Principal for Research, Innovation and Postgraduate Education. "At UP, we are proud to see one of our own making such a profound global impact. His work reminds our students and young scientists that excellence, curiosity, and collaboration can take South African science to the world stage."

The recognition reinforces UP's position as a hub of excellence, and it highlights more than two decades of FABI's contributions to forest health. For South Africa, it signals the country's growing impact in advancing scientific knowledge worldwide.

CURRENT VACANCIES

Assistant Professor of Plant Pathology and Fungal Biology, The University of California, Davis

The Department of Plant Pathology at the University of California, Davis is seeking applications for a full-time, tenure-track Assistant Professor position in Mycology, with a focus on plant pathogenic, symbiotic, or mycotoxigenic fungi and fungal-like organisms (e.g., oomycetes). Please visit the <u>Plant Pathology website at UC Davis</u> for further information and https://recruit.ucdavis.edu/JPF07339 to apply.

To ensure consideration, applications should be received by 1 December 2025.

https://www.isppweb.org/ads/California Davis PPFB AP.pdf.

ACKNOWLEDGEMENTS

Thanks to Rita Colwell, Grahame Jackson, Greg Johnson, and Anthony Young for contributions.

COMING EVENTS

14th Arab Congress of Plant Protection Sciences

3 November – 7 November, 2025

Algeria city, Algeria

Contact and Email: info@acpp-aspp.com

Website: <u>acpp-aspp.com</u>

Plant-Parasitic Nematode Identification Course

12 December – 19 December, 2025

Clemson, South Carolina

Contact Email: ckhanal@clemson.edu

Website: www.clemson.edu/cafls/nematology

Plant and Animal Genome Conference (PAG 33)

9 January – 14 January, 2026

San Diego California, USA

Website: https://intlpag.org/PAG33/

8th International Bacterial Wilt Symposium (IBWS)

22 March – 26 March, 2026

Wageningen, the Netherlands

Website: event.wur.nl/ibws2026

71st Annual Conference on Soilborne Plant Pathogens and the 56th California Nematology Workshop

24 March – 26 March, 2026

Kearney Agriculture Research and Extension Center in

Parlier, CA, USA

Website: soilborneplantpathogens.org

21st Reinhardsbrunn Symposium 2026 – Modern Fungicides and Antifungal Compounds

19 April – 23 April, 2026

Friedrichroda, Germany

Website: https://reinhardsbrunn-symposium.de/de/

36th Symposium of the European Society of Nematologists

1 June – 5 June, 2026

Egmond aan Zee, The Netherlands

Website: www.esn2026.nl/home

25th Annual Fusarium Laboratory Workshop

21 June – 26 June, 2026

Manhattan, Kansas, USA

Contact: John Leslie ifl@ksu.edu

Plant Health 2026

1 August – 4 August, 2026

Providence, Rhode Island, USA

Website:

www.apsnet.org/meetings/annual/PH2026/Pages/defa

ult.aspx

Plant Pathology 2026

8 September – 10 September, 2026

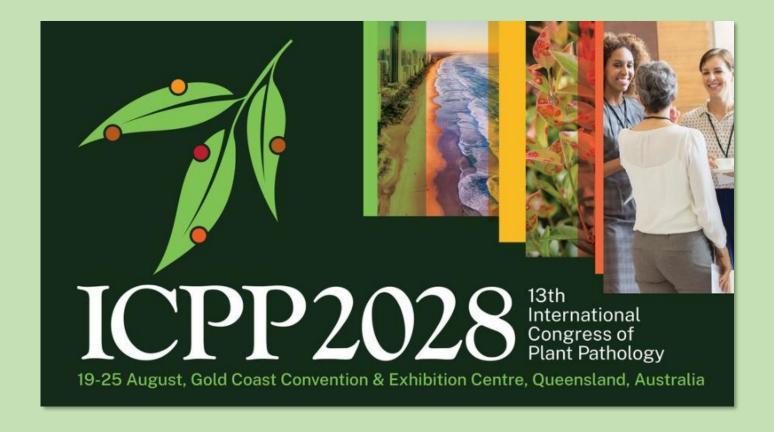
John Innes Centre Conference Centre, Norwich, UK

Website: Not yet available

International Plant Protection Congress

Dates not announced yet, 2027

Christchurch, New Zealand


Website: www.plantprotection.org

13th International Congress of Plant Pathology 2028

19 August – 25 August, 2028

Gold Coast, Queensland, Australia

Website: www.icpp2028.org

INTERNATIONAL SOCIETY FOR PLANT PATHOLOGY (ISPP)

WWW.ISPPWEB.ORG

The ISPP List is an e-mail list server which broadcasts messages and announcements to its subscribers. Its goal is to facilitate communication among members of the International Society for Plant Pathology and its Associated Societies. Advertised vacancies in plant pathology and ISPP Newsletter alerts are also sent to members of the ISPP List.

In accordance with the guidelines and recommendations established by the new EU General Data Protection Regulation 679/2016 (GDPR), the International Society for Plant Pathology has created a <u>Privacy Information Notice</u> containing all the information you need to know about how we collect, use and protect your personal data.

This policy explains when and why we collect personal information about our users, how we use it, the conditions under which we may disclose it to third parties, how we keep it safe and secure and your rights and choices in relation to your personal information.

Should you need further information please contact <u>business.manager@issppweb.org</u>

SUBSCRIBE OUR NEWSLETTER

